首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7906篇
  免费   332篇
  国内免费   2篇
  2023年   31篇
  2022年   31篇
  2021年   97篇
  2020年   63篇
  2019年   89篇
  2018年   154篇
  2017年   150篇
  2016年   220篇
  2015年   243篇
  2014年   328篇
  2013年   411篇
  2012年   682篇
  2011年   872篇
  2010年   443篇
  2009年   210篇
  2008年   606篇
  2007年   560篇
  2006年   463篇
  2005年   427篇
  2004年   361篇
  2003年   321篇
  2002年   256篇
  2001年   142篇
  2000年   217篇
  1999年   118篇
  1998年   66篇
  1997年   30篇
  1996年   25篇
  1995年   25篇
  1994年   13篇
  1993年   15篇
  1992年   37篇
  1991年   27篇
  1990年   22篇
  1989年   27篇
  1988年   17篇
  1987年   24篇
  1986年   13篇
  1985年   29篇
  1984年   31篇
  1983年   12篇
  1982年   22篇
  1980年   19篇
  1979年   23篇
  1978年   17篇
  1976年   19篇
  1975年   17篇
  1974年   23篇
  1973年   13篇
  1972年   11篇
排序方式: 共有8240条查询结果,搜索用时 78 毫秒
991.
Chlorite dismutases (Cld) are unique heme b containing oxidoreductases that convert chlorite to chloride and dioxygen. Recent phylogenetic and structural analyses demonstrated that these metalloproteins significantly differ in oligomeric and subunit structure. Here we have analyzed two representatives of two phylogenetically separated lineages, namely pentameric Cld from Candidatus "Nitrospira defluvii" and dimeric Cld from Nitrobacter winogradskyi having a similar enzymatic activity at room temperature. By application of a broad set of techniques including differential scanning calorimetry, electronic circular dichroism, UV-vis and fluorescence spectroscopy the temperature-mediated and chemical unfolding of both recombinant proteins were analyzed. Significant differences in thermal and conformational stability are reported. The pentameric enzyme is very stable between pH 3 and 10 (T(m)=92°C at pH 7.0) and active at high temperatures thus being an interesting candidate for bioremediation of chlorite. By contrast the dimeric protein starts to unfold already at 53°C. The observed unfolding pathways are discussed with respect to the known subunit structure and subunit interaction.  相似文献   
992.
The emergence of spa types and spa–clonal complexes (CC) among clinical methicillin-resistant Staphylococcus aureus isolates collected from the University Clinical Center in Gdańsk between 2008 and 2009 were investigated. Phage typing was used as the initial screening in the study. The basic set of phages and the additional set of phages were used. Most of the isolates (56 %) belonged to the phage group III. With the additional set of phages, eight types were found, with predominant one MR8 (50 %). Sixteen distinct spa types were observed. The most frequent were t003 (22 %), t151 (16 %), and t008 (12 %). The spa types were clustered into two spa-CC and eight singletons. The predominant CC010 (50 %) consisted of six types, with the most common t003 (36.7 %) and t151(26.7 %), and in 80 % was identified as staphylococcal chromosomal casette mec (SCCmec) type II. The second cluster has no founder (12 %) with only two spa types: t037 belonging to SCCmec type III and t029. In the most frequent singleton, spa type t008 alone was clustered in 12 % of the isolates. All singletons correspond to SCCmec type IV. The CC010 was distributed in most of the hospital wards, corresponded to Multilocus sequence typing type ST5/ST225 and was constantly present throughout the observed period. The isolates of CC010 generally belonged to the phage group III, and most of them (53.3 %) were resistant to erythromycin, clindamycin, and ciprofloxacin. The concordance between spa-clone and phage type was very high, but the same phage type MR8 was observed within different spa types of the predominant clone.  相似文献   
993.
994.
We have developed a procedure in which disulfide cross-links are used to identify regions of proteins that undergo functionally important intramolecular motion. The approach was applied to the identification of disulfide bonds that stabilize the active state of the yeast α-mating pheromone receptor Ste2p, a member of the superfamily of G protein-coupled receptors. Cysteine residues were introduced at random positions in targeted regions of a starting allele of Ste2p that completely lacks cysteines. Libraries of mutated receptors were then screened for alleles that exhibit constitutive signaling. Two strongly activated alleles were recovered containing cysteine residues in transmembrane (TM) segments 5 and 6. Constitutive activity of these alleles was dependent on the presence of both introduced cysteines and was sensitive to reducing agent. Cross-linked peptides derived from the mutant receptors were detected by immunoblotting. Additional sites of cross-linking between TM segments 5 and 6 that did not lead to constitutive activation were also identified. These results indicate that relative motion of the TM segments 5 and 6 in the extracellular half of the membrane is sufficient to activate the receptor and that TM segment 6, but not TM segment 5, exhibits rotational mobility that is not associated with receptor activation.  相似文献   
995.
Widdrol is an odorant compound isolated from Juniperus chinensis. We previously reported that widdrol induces Gap 1 (G1) phase cell cycle arrest and leads to apoptosis in human colon adenocarcinoma HT29 cells. It was also reported that this cell cycle arrest is associated with the induction of checkpoint kinase 2 (Chk2), p53 phosphorylation and cyclin dependent kinase (Cdk) inhibitor p21 expression. In this paper, we investigated the molecular mechanisms of widdrol on the activation of G1 DNA damage checkpoint at early phase when DNA damages occurred in HT29 cells. First of all, we examined that widdrol breaks DNA directly or not. As the results of DNA electrophoresis and formation of phosphorylated histone H2AX (γH2AX) foci in HT29 cells, widdrol generates DNA double-strand breaks directly within 0.5?h both in vitro and in vivo. Based on this result, the change of proteins related in checkpoint pathway was examined over a time course of 0.5-24?h. Treatment of HT29 cells with widdrol elicits the following: (1) phosphorylation of Chk2 and p53, (2) reduction of cell division cycle 25A (Cdc25A) expression, (3) increase of Cdk inhibitor p21 expression, and (4) decrease of the levels of Cdk2 and cyclin E expression in a time-dependent manner. Moreover, only the expression level of mini-chromosome maintenance 4 (MCM4) protein, a subunit of the eukaryotic DNA replicative helicase, is rapidly down-regulated in HT29 cells treated with widdrol over the same time course, but those of the other MCM proteins are unchanged. Overall, our results indicated that widdrol breaks DNA directly in HT29 cells, and this DNA damage results in checkpoint activation via Chk2-p53-Cdc25A-p21-MCM4 pathway and finally cells go to G1-phase cell cycle arrest and apoptosis.  相似文献   
996.
Ha YM  Park YJ  Lee JY  Park D  Choi YJ  Lee EK  Kim JM  Kim JA  Park JY  Lee HJ  Moon HR  Chung HY 《Biochimie》2012,94(2):533-540
Herein we describe the design, synthesis and biological activities of 2-(substituted phenyl)thiazolidine-4-carboxylic acid derivatives as novel tyrosinase inhibitors. The target compounds 2a2j were designed and synthesized from the structural characteristics of N-phenylthiourea, tyrosinase inhibitor and tyrosine, and l-DOPA, the natural substrates of tyrosinase. Among them, (2R/S,4R)-2-(2,4-dimethoxyphenyl)thiazolidine-4-carboxylic acid (2g) caused the greatest inhibition 66.47% at 20 μM of l-DOPA oxidase activity of mushroom tyrosinase. Kinetic analysis of tyrosinase inhibition revealed that 2g is a competitive inhibitor. We predicted the tertiary structure of tyrosinase, and simulated the docking of mushroom tyrosinase with 2g. These results suggest that the binding affinity of 2g with tyrosinase is high. Also, 2g effectively inhibited tyrosinase activity and reduced melanin levels in B16 cells treated with α-MSH. These data strongly suggest that 2g can suppress the production of melanin via the inhibition of tyrosinase activity.  相似文献   
997.
Understanding the effect of surface charge on the stability of proteins is one prerequisite for "tailoring" proteins with increased thermal stability. Here, we investigated the origin of the altered thermal stability observed between the four recently isolated isoforms (EINV1-EINV4) of external invertase. External invertase from yeast Saccharomyces cerevisiae, a homodimeric glycoprotein, represents a widely used model for studying the influence of the glyco component on protein stability. The stability of the four isoforms of invertase decreases from EINV1 to EINV4, which is accompanied by an increase in negative surface charge density. Mass spectrometry analysis revealed that the isoforms share identical protein parts indicating that the differences in stability are the result of post-translational modifications. (31)P NMR analysis revealed that the isoforms contain negatively charged phosphate groups in diester and monoester forms attached to the glycan part. The total amount of phosphate bound to the polymannan component varies between the different isoforms. These results, together with the analysis of the amount of polymannan components, show that negative surface charge density does not entirely depend on the amount of phosphate but rather on its distribution. This suggests that charged groups bound to the glyco-component of a protein can influence the stability of glycoproteins.  相似文献   
998.
Titanocene dichloride [Ti(η5-C5H5)2Cl2] (1), has been grafted onto dehydrated hydroxyapatite (HAP), Al2O3 and two mesoporous silicas MSU-2 (Michigan State University Silica type 2) and HMS (Hexagonal Mesoporous Silica), to give the novel materials HAP/[Ti(η5-C5H5)2Cl2] (S1) (1.01 wt.% Ti), Al2O3/[Ti(η5-C5H5)2Cl2] (S2) (2.36 wt.% Ti), HMS/[Ti(η5-C5H5)2Cl2] (S3) (0.75 wt.% Ti) and MSU-2/[Ti(η5-C5H5)2Cl2] (S4) (0.74 wt.% Ti), which have been characterized by powder X-ray diffraction, X-ray fluorescence, nitrogen gas sorption, multinuclear magic angle spinning NMR spectroscopy, IR spectroscopy, thermogravimetry analysis, UV spectroscopy, scanning electronic microscopy and transmission electronic microscopy. The cytotoxicity of the titanocene-functionalized materials toward human cancer cell lines from five different histogenic origins: 8505 C (anaplastic thyroid cancer), A253 (head and neck cancer), A549 (lung carcinoma), A2780 (ovarian cancer) and DLD-1 (colon cancer) has been determined. M50 values (quantity of material needed to inhibit normal cell growth by 50%) and Ti-M50 values (quantity of anchored titanium needed to inhibit normal cell growth by 50%) indicate that the activity of S1-S4 against studied human cancer cells depended on the surface type as well as on the cell line. In addition, studies on the titanocene release and the interaction of the materials S1-S4 with DNA show that the cytotoxic activity may be due to particle action, because no release of titanium complexes has been observed in physiological conditions, while electrostatic interactions of titanocene-functionalized particles with DNA have been observed.  相似文献   
999.
Ammonia oxidation, the first step in nitrification, is performed by autotrophic bacteria and thaumarchaea, whose relative contributions vary in different soils. Distinctive environmental niches for the two groups have not been identified, but evidence from previous studies suggests that activity of thaumarchaea, unlike that of bacterial ammonia oxidizers, is unaffected by addition of inorganic N fertilizer and that they preferentially utilize ammonia generated from the mineralization of organic N. This hypothesis was tested by determining the influence of both inorganic and organic N sources on nitrification rate and ammonia oxidizer growth and community structure in microcosms containing acidic, forest soil in which ammonia oxidation was dominated by thaumarchaea. Nitrification rate was unaffected by the incubation of soil with inorganic ammonium but was significantly stimulated by the addition of organic N. Oxidation of ammonia generated from native soil organic matter or added organic N, but not added inorganic N, was accompanied by increases in abundance of the thaumarchaeal amoA gene, a functional gene for ammonia oxidation, but changes in community structure were not observed. Bacterial amoA genes could not be detected. Ammonia oxidation was completely inhibited by 0.01% acetylene in all treatments, indicating ammonia monooxygenase-dependent activity. The findings have implications for current models of soil nitrification and for nitrification control strategies to minimize fertilizer loss and nitrous oxide production.  相似文献   
1000.
Erythropoietin is a major regulator of erythropoiesis which maintains the body's red blood cell mass and tissue oxygenation at an optimum level. Recombinant human erythropoietin (rhEPO), which is a widely used therapeutic agent for the treatment of anemia and which represents one of the largest biopharmaceuticals markets, is produced from recombinant Chinese hamster ovary cells. rhEPO is a glycoprotein with complex glycan structure, which is responsible for its therapeutic efficacy, including the in vivo activity and half-life. In order to obtain an optimal and consistent glycoform profile of rhEPO and concurrently maintain a high production yield, various approaches in drug development and cell culture technology have been attempted. Recent advances in rhEPO production are classified into three types: the development of improved rhEPO molecules by protein engineering; improvement of production host cells by genetic engineering; and culture condition optimization by fine control of the production mode/system, process parameters, and culture media. In this review, we focus on rhEPO production strategies as they have progressed thus far. Furthermore, the current status of the market and outlook on rhEPO and its derivatives are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号